第六章 6.4 6.4.3 第2课时
A 组·素养自测
一、选择题
1.在△ABC中,a=3,b=5,sinA=,则sinB=( B )
A. B.
C. D.1
[解析] 由=,知=,即sinB=,选B.
2.在△ABC中,内角A,B,C所对的边分别是a,b,c.若3a=2b,则的值为( D )
A.- B.
C.1 D.
[解析] 由正弦定理得=
=-1=-1=.
3.已知△ABC的面积为,且b=2,c=,则sinA=( A )
A. B.
C. D.
[解析] 由已知,得=×2××sinA,
∴sinA=.
4.在△ABC中,已知3b=2asin B,且cos B=cos C,角A是锐角,则△ABC的形状是( D )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等边三角形
[解析] 由3b=2asin B,得=,根据正弦定理,得=,所以=,即sin A=.又角A是锐角,所以A=60°.又cos B=cos C,且B,C都为三角形的内角,所以B=C.故△ABC为等边三角形,故选D.
5.(多选)在△ABC中,若a=2,b=2,A=30°,则B为( AC )
A.60° B.30°
C.120° D.30°或150°
[解析] 由正弦定理可知=,
∴sin B===,
∵B∈(0°,180°),∴B=60°或120°.
二、填空题
6.已知△ABC外接圆半径是2 cm,∠A=60°,则BC边长为__2 cm .
[解析] ∵=2R,
∴BC=2RsinA=4sin60°=2(cm).
7.(2019·北师大附二中高二检测)在△ABC中,若B=2A,a︰b=1︰,则A=__30°__.
[解析] 由正弦定理=知,
==,
所以sinB=sinA=sin2A.
所以cosA=,因为A为△ABC的内角,
所以A=30°.