一、知识梳理
1.导数的概念
(1)函数y=f(x)在x=x0处的导数
称函数y=f(x)在x=x0处的瞬时变化率
=为函数y=f(x)在x=x0处的导数,记作f′(x0),即f′(x0)==.
(2)导数的几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).
(3)函数f(x)的导函数
称函数f′(x)=__为f(x)的导函数.
2.基本初等函数的导数公式