学习目标:1.了解曲线参数方程的有关概念.2.能进行参数方程和普通方程的互化.(重点)
1.参数方程的概念
定义:设在平面上取定了一个直角坐标系xOy,把坐标x,y表示为第三个变量t的函数,a≤t≤b.(*)
如果对于t的每一个值(a≤t≤b),(*)式所确定的点M(x,y)都在一条曲线上;而这条曲线上的任一点M(x,y),都可由t的某个值通过(*)式得到,则称(*)式为该曲线的参数方程,其中变量t称为参数.
简单地说,若t在a≤t≤b内变动时,由(*)式确定的点M(x,y)描出一条曲线,则称(*)式为该曲线的参数方程.
2.参数方程与普通方程互化
(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.
(2)如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.
思考1:曲线的参数方程中,参数是否一定具有某种实际意义?在圆的参数方程中,参数θ有什么实际意义?
[提示] 联系x、y的参数t(θ,φ,…)可以是一个有物理意义或几何意义的变数,也可以是无实际意义的任意实数.圆的参数方程中,其中参数θ的几何