2.解简单的排列应用题,首先必须认真分析题意,看能否把问题归结为排列问题,即是否有顺序.如果是的话,再进一步分析,这里n个不同的元素指的是什么,以及从n个不同的元素中任取m个元素的每一种排列对应的是什么事情,然后才能运用排列数公式求解.
1.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________.
【解析】 从2,4中取一个数作为个位数字,有2种取法;再从其余四个数中取出三个数排在前三位,有A种排法.由分步乘法计数原理知,这样的四位偶数共有2×A=48个.
【答案】 48
2.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有________种.
【解析】 把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,共A=24种.
【答案】 24
3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的活动.若其中甲、乙两名志愿者不能从事翻译活动,则选派方案共有________种.
【解析】 翻译活动是特殊位置优先考虑,有4种选法(除甲、乙外),其余活动共有A种选法,由分步乘法计数原理知共有4×A=240种选派方案.
【答案】 240