■名师点拨
(1)两个不等式a2+b2≥2ab与≥成立的条件是不同的.前者要求a,b是实数即可,而后者要求a,b都是正实数(实际上后者只要a≥0,b≥0即可).
(2)两个不等式a2+b2≥2ab和≥都是带有等号的不等式,都是“当且仅当a=b时,等号成立”.
2.基本不等式与最值
已知x>0,y>0,则
(1)若x+y=S(和为定值),则当x=y时,积xy取得最大值.
(2)若xy=P(积为定值),则当x=y时,和x+y取得最小值2.
记忆口诀:两正数的和定积最大,两正数的积定和最小.
■名师点拨
利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即:
①一正:符合基本不等式≥成立的前提条件,a>0,b>0;