【例1】 计算:(1)2log32-log3+log38-5log53;
(2)1.5-×0+80.25×+(×)6-.
[解] (1)原式=log3-3=2-3=-1.
(2)原式=+2×2+22×33-=21+4×27=110.
指数、对数的运算应遵循的原则
指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.
1.设3x=4y=36,则+的值为( )
A.6 B.3
C.2 D.1
D [由3x=4y=36得x=log336,y=log436,
∴+=2log363+log364=log369+log364=log3636=1.]
指数函数、对数函数的图象及应用