【例1】 过点P(-1,0),Q(0,2)分别作两条互相平行的直线,使它们在x轴上截距之差的绝对值为1,求这两条直线的方程.
思路探究:考虑直线斜率是否存在,不存在时可直接求出,存在时设方程利用截距关系求k.
[解] (1)当两条直线的斜率不存在时,两条直线的方程分别为x=-1,x=0,它们在x轴上截距之差的绝对值为1,满足题意;
(2)当直线的斜率存在时,设其斜率为k,则两条直线的方程分别为y=k(x+1),y=kx+2.
令y=0,分别得x=-1,x=-.
由题意得=1,即k=1.
则直线的方程为y=x+1,y=x+2,
即x-y+1=0,x-y+2=0.
综上可知,所求的直线方程为x=-1,x=0,或x-y+1=0,x-y+2=0.
1.直线方程的五种形式及其选取
直线方程的五种形式各有优劣,在使用时要根据题目条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.