最新课程标准:1.会利用所学知识,解决一次函数型、二次函数型及分段函数型的实际问题.2.掌握求解函数应用题的基本步骤,培养学生的数学应用意识.
知识点 函数模型
(1)一次函数模型
解析式:y=kx+b.
(2)二次函数模型
①一般式:y=ax2+bx+c.
②顶点式:y=a(x-h)2+k,其中顶点坐标为(h,k).
(3)分段函数模型
有些实际问题,在事物的某个阶段对应的变化规律不尽相同,此时我们可以选择利用分段函数模型来刻画它,由于分段函数在不同的区间中具有不同的解析式,因此分段函数在研究条件变化的实际问题中,或者在某一特定条件下的实际问题中具有广泛的应用.
(1)在函数建模中,通常需要先画出函数图像,根据图像来确定两个变量的关系,选择函数类型.
(2)函数模型在实际应用中,函数的自变量x往往具有实际意义,如x表示长度时,x≥0;x表示件数时,x≥0,且x∈Z等.在解答时,必须要考虑这些实际意义.
[基础自测]
1.一个等腰三角形的周长是20,则底边长y是关于腰长x的函数,其解析式为( )
A.y=20-2x(x≤10) B.y=20-2x(x<10)