4.空间向量的数乘运算
(1)定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算.当λ>0时,λa与向量a方向相同;当λ<0时,λa与向量a方向相反;当λ=0时,λa=0;λa的长度是a的长度的|λ|倍.
(2)运算律:①λ(a+b)=λa+λb;②λ(μa)=(λμ)a.
5.共线向量和共面向量
(1)共线向量
①定义:表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.
②共线向量定理:对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb.
③点P在直线AB上的充要条件:存在实数t,使=+t.
(2)共面向量
①定义:平行于同一个平面的向量叫做共面向量.
②共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x_a+y_b.
③空间一点P位于平面ABC内的充要条件:存在有序实数对(x,y) 使=x+y或对空间任意一点O,有=+x+y.
思考:(1)空间中任意两个向量一定是共面向量吗?
(2)若空间任意一点O和不共线的三点A,B,C,满足=++,则点P与点