1、已知函数y=f(x)的图象在点(1,f(1))处的切线方程x-2y+1=0,则f(1)+2f ′(1)的值是( )
A. B.1
C. D.2
【答案】D
【解析】∵函数y=f(x)的图象在点(1, f(1))处的切线方程是x-2y+1=0,∴f(1)=1, f ′(1)=.∴f(1)+2f ′(1)=2.故选D.
2、曲线y=sin x+ex在点(0,1)处的切线方程是( )
A.x-3y+3=0 B.x-2y+2=0
C.2x-y+1=0 D.3x-y+1=0
【答案】C
【解析】y′=cos x+ex,故切线斜率为k=2,切线方程为y=2x+1,即2x-y+1=0.
3、.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是( )
A.x+y+1=0 B.x+y-1=0
C.3x-y-1=0 D.3x-y+1=0
【答案】B
【解析】由函数y=f(x)为奇函数,可得f(x)在[0,+∞)内的解析式为f(x)=-x2+x,故切点为(1,0).
因为f'(x)=-2x+1,
所以f'(1)=-1,
故切线方程为y=-(x-1),
即x+y-1=0.
4、已知函数f(x)=sin x-cos x,且f ′(x)=f(x),则tan 2x的值是( )