用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试题 >> 数学试题
高中数学编辑
2020届高考数学一轮复习第十篇计数原理概率随机变量及其分布专题10.8离散型随机变量的均值与方差练习(解析版)
下载扣金币方式下载扣金币方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试题
    资源子类一轮复习
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小1135 K
    上传用户b-box
  • 更新时间2019/9/18 15:00:12
    下载统计今日0 总计16
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
【考试要求】 
1.理解取有限个值的离散型随机变量的均值、方差的概念;
2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
【知识梳理】
1.离散型随机变量的均值与方差
若离散型随机变量X的分布列为
X
x1
x2
xi
xn
P
p1
p2
pi
pn
(1)均值
称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.
(2)方差
称D(X)=ni=1__(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差.
2.均值与方差的性质
(1)E(aX+b)=aE(X)+b.
(2)D(aX+b)=a2D(X)(a,b为常数).
3.两点分布与二项分布的均值、方差
(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).
【微点提醒】
1.若x1,x2相互独立,则E(x1·x2)=E(x1)·E(x2).
2.均值与方差的关系:D(X)=E(X2)-E2(X).

3.超几何分布的均值:若X服从参数为NMn的超几何分布,

  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册