【考试要求】
1.结合实例,借助几何直观了解函数的单调性与导数的关系;能利用导数研究函数的单调性;对于多项式函数,能求不超过三次的多项式函数的单调区间;
2.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;
3.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值;体会导数与单调性、极值、最大(小)值的关系.
【知识梳理】
1.函数的单调性与导数的关系
函数y=f(x)在某个区间内可导,则:
(1)若f′(x)>0,则f(x)在这个区间内单调递增;
(2)若f′(x)<0,则f(x)在这个区间内单调递减;
(3)若f′(x)=0,则f(x)在这个区间内是常数函数.
2.函数的极值与导数
条件
|
f′(x0)=0
|
x0附近的左侧f′(x)>0,右侧f′(x)<0
|
x0附近的左侧f′(x)<0,右侧f′(x)>0
|
图象
|
形如山峰
|
形如山谷
|