【考试要求】
1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;
2.体会极限思想;
3.通过函数图象直观理解导数的几何意义;
4.能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=,y=的导数;
5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(ax+b))的导数;
6.会使用导数公式表.
【知识梳理】
1.函数y=f(x)在x=x0处的导数
(1)定义:称函数y=f(x)在x=x0处的瞬时变化率 = 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)= = .
(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).
2.函数y=f(x)的导函数
如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,函数f′(x)=lim 称为函数y=f(x)在开区间内的导函数.
3.导数公式表
基本初等函数
|
导函数
|
f(x)=c(c为常数)
|
f′(x)=0
|
f(x)=xα(α∈Q*)
|
f′(x)=αxα-1
|
f(x)=sin x
|
f′(x)=cos x
|