用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试题 >> 数学试题
高中数学编辑
2020届高考数学一轮复习第六篇平面向量与复数专题6.4复数练习(解析版)
下载扣金币方式下载扣金币方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试题
    资源子类一轮复习
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小973 K
    上传用户b-box
  • 更新时间2019/9/18 14:46:49
    下载统计今日0 总计14
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
【考试要求】 
1.通过方程的解,认识复数;
2.理解复数的代数表示及其几何意义,理解两个复数相等的含义;
3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义.
【知识梳理】
1.复数的有关概念
内容
意义
备注
复数的概念
形如a+bi(a∈R,b∈R)的数叫复数,其中实部为a,虚部为b
若b=0,则a+bi为实数;若a=0且b≠0,则a+bi为纯虚数
复数相等
a+bi=c+di⇔a=c且b=d(a,b,c,d∈R)
 
共轭复数
a+bi与c+di共轭⇔a=c且b=-d(a,b,c,d∈R)
 
复平面
建立平面直角坐标系来表示复数的平面叫做复平面,x轴叫实轴,y轴叫虚轴
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数
复数的模
设对应的复数为z=a+bi,则向量的长度叫做复数z=a+bi的模
|z|=|a+bi|=
2.复数的几何意义
复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即
(1)复数z=a+bi 复平面内的点Z(a,b)(a,b∈R).
(2)复数z=a+bi(a,b∈R) 平面向量.
3.复数的运算
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
(1)加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册