用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试题 >> 数学试题
高中数学编辑
2020届高考数学一轮复习第六篇平面向量与复数专题6.3平面向量的数量积及其应用练习(解析版)
下载扣金币方式下载扣金币方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试题
    资源子类一轮复习
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小1049 K
    上传用户b-box
  • 更新时间2019/9/18 14:46:29
    下载统计今日0 总计16
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
【考试要求】 
1.理解平面向量数量积的含义及其物理意义;
2.了解平面向量的数量积与向量投影的关系;
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;
4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;
5.会用向量的方法解决某些简单的平面几何问题.
【知识梳理】
1.平面向量数量积的有关概念
(1)向量的夹角:已知两个非零向量a和b,记=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.
(2)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,则a与b的数量积(或内积)a·b=|a||b|cos__θ.规定:零向量与任一向量的数量积为0,即0·a=0.
(3)数量积的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
2.平面向量数量积的性质及其坐标表示
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.
(2)模:|a|==.
(3)夹角:cos θ==.
(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤· .
3.平面向量数量积的运算律
(1)a·b=b·a(交换律).
(2)λa·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
 
 
  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册