【考点聚焦突破】
考点一 中点弦及弦长问题
角度1 中点弦问题
【例1-1】 已知椭圆+y2=1,
(1)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;
(2)求过点P且被P点平分的弦所在直线的方程.
【答案】见解析
【解析】(1)设弦的端点为P(x1,y1),Q(x2,y2),其中点是M(x,y),则x2+x1=2x,y2+y1=2y,由于点P,Q在椭圆上,则有:
①-②得=-=-,
所以-=,
化简得x2-2x+2y2-2y=0(包含在椭圆+y2=1内部的部分).
(2)由(1)可得弦所在直线的斜率为k=-=-,
因此所求直线方程是y-=-,化简得2x+4y-3=0