1.(2018·全国卷Ⅱ)设函数f(x)=5-|x+a|-|x-2|.
(1)当a=1时,求不等式f(x)≥0的解集;
(2)若f(x)≤1,求a的取值范围.
(1)当a=1时,f(x)=
可得f(x)≥0的解集为{x|-2≤x≤3}.
(2)f(x)≤1等价于|x+a|+|x-2|≥4.
而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立.
故f(x)≤1等价于|a+2|≥4.
由|a+2|≥4可得a≤-6或a≥2.
所以a的取值范围是(-∞,-6]∪[2,+∞).
2.(2018·广州一模)已知函数f(x)=2|x+a|+|3x-b|.
(1)当a=1,b=0时,求不等式f(x)≥3|x|+1的解集;
(2)若a>0,b>0,且函数f(x)的最小值为2,求3a+b的值.
(1)当a=1,b=0时,不等式f(x)≥3|x|+1,