1.不等式性质的两个易错点.
(1)忽略不等式乘法中“大于0”这一条件.
(2)求相关式子的取值范围时,常常因变形不等价导致错误.
2.应用基本不等式求最值的三个注意点.
(1)“一正”:各项或各因数都是正数.
(2)“二定”:积(或和)为定值.
(3)“三等”:等号成立的条件.
3.绝对值不等式的两个注意点.
(1)解绝对值不等式、关键是应用绝对值定义或绝对值的性质去掉绝对值符号.
(2)在应用零点分段法分类讨论时,要注意做到分类标准统一,分类方法既不重复又不遗漏,在应用平方法时,要注意同解变形.
专题一 基本不等式的应用
在用基本不等式求最值时,“正数”“相等”等条件往往容易从题设中获得或验证,而“定值”则需要一定的技巧和方法.常用的方法有“加-项、减-项”“配系数”“拆项法”“1的代换”等.
[例1] 已知x>1,求函数y=的最小值.
解:y===≥1,
当且仅当x-1=,即x=2时,等号成立,
所以当x=2时,y有最小值,最小值为1.
归纳升华
1.利用基本不等式求最值的条件是“一正、二定、三相等”,“一正”是指各项均为正数;“二定”就是若积为定值则和有最小值,若和为定值则积有最大值;“三相等”就是必须验证等号成立的条件,若等号不在给定的区间内,通常利用函数的单调性求最值.
2.基本不等式的功能在于“和”与“积”的相互转化,使用基本不等式求最值时,给定的形式不一定能直接适合基本不等式,往往需要拆添项或配凑因式(一般是凑和或积为定值的形式),构造出基本不等式的形式再