用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试题 >> 数学试题
高中数学编辑
【新人教A版】2019秋高中数学选修4-5第一讲不等式和绝对值不等式复习课练习(解析版)
下载扣金币方式下载扣金币方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试题
    资源子类章节测试
  • 教材版本人教A版(现行教材)
    所属学科高中数学
  • 适用年级高二年级
    适用地区全国通用
  • 文件大小1102 K
    上传用户b-box
  • 更新时间2019/9/18 9:44:47
    下载统计今日0 总计5
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
1.不等式性质的两个易错点.
(1)忽略不等式乘法中“大于0”这一条件.
(2)求相关式子的取值范围时,常常因变形不等价导致错误.
2.应用基本不等式求最值的三个注意点.
(1)“一正”:各项或各因数都是正数.
(2)“二定”:积(或和)为定值.
(3)“三等”:等号成立的条件.
3.绝对值不等式的两个注意点.
(1)解绝对值不等式、关键是应用绝对值定义或绝对值的性质去掉绝对值符号.
(2)在应用零点分段法分类讨论时,要注意做到分类标准统一,分类方法既不重复又不遗漏,在应用平方法时,要注意同解变形.
 
 
专题一 基本不等式的应用
在用基本不等式求最值时,“正数”“相等”等条件往往容易从题设中获得或验证,而“定值”则需要一定的技巧和方法.常用的方法有“加-项、减-项”“配系数”“拆项法”“1的代换”等.
[例1] 已知x>1,求函数y=的最小值.
解:y===≥1,
当且仅当x-1=,即x=2时,等号成立,
所以当x=2时,y有最小值,最小值为1.
归纳升华
1.利用基本不等式求最值的条件是“一正、二定、三相等”,“一正”是指各项均为正数;“二定”就是若积为定值则和有最小值,若和为定值则积有最大值;“三相等”就是必须验证等号成立的条件,若等号不在给定的区间内,通常利用函数的单调性求最值.

2.基本不等式的功能在于的相互转化,使用基本不等式求最值时,给定的形式不一定能直接适合基本不等式,往往需要拆添项或配凑因式(一般是凑和或积为定值的形式),构造出基本不等式的形式再

  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册