[整合·网络构建]
[警示·易错提醒]
1.数学归纳法的两个关注点.
(1)关注用数学归纳法证题的步骤.第一步称“归纳奠基”,是递推链的起点;第二步称为“归纳递推”,是递推链具有传递性的保证.两步缺一不可,否则不能保证结论成立.
(2)关注适用范围,数学归纳法适用于某些与正整数n有关的问题,这里n是任意的正整数,它可取无限多个值,但是,并不能说所有与正整数n有关的问题都可以用数学归纳法.
2.数学归纳法的两个易错点.
(1)在数学归纳法中,没有应用归纳假设.
(2)归纳推理不到位.
专题一 数学归纳法
在使用数学归纳法证明不等式时,一般来说,第一步,验证比较简明,而第二步归纳步骤情况较复杂.因此,熟悉归纳步骤的证明方法是十分重要的,其实归纳步骤可以看作是一个独立的证明问题,归纳假设“P(k)”是问题的条件,而命题P(k+1)成立就是所要证明的结论,因此,合理运用归纳假设这一条件就成了归纳步骤中的关键.
[例?] 设0<a<1,定义a1=1+a,an+1=+a,求证:对一切正整数n,有1<an<.
证明:(1)当n=1时,a1>1,a1=1+a<,命题成立.
(2)假设n=k(k∈N*)时,命题成立.即1<ak<,
当n=k+1时,由递推公式,知ak+1=+a>(1-a)+a=1.