一、选择题
1.(2019·张掖月考)数列的前2 019项的和为( )
A.+1 B.-1
C.+1 D.-1
B 解析通过已知条件得到=-,裂项累加得S2 019=-+-+…+-1=-1,故选B.
2.数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则++…+=( )
A. B.
C. D.
D 解析由题意知an+1-an=n+1,所以an-an-1=n,所以an=an-an-1+an-1-an-2+an-2-an-3+…+a2-a1+a1=1+2+…+n=,所以==2.所以++…+=2=2×=.故选D.
3.(2019·西安一中月考)在公差大于0的等差数列{an}中,2a7-a13=1,且a1,a3-1,a6+5成等比数列,则数列(-1)n-1an的前21项和为( )
A.21 B.-21
C.441 D.-441
A 解析设等差数列{an}的公差为d,d>0,由题意可得2(a1+6d)-(a1+12d)=1,a1(a1+5d+5)=(a1+2d-1)2,解得a1=1,d=2,所以an=1+2(n-1)=2n-1.所以(-1)n-1an=(-1)n-1(2n-1),故数列(-1)n-1an的前21项和为1-3+5-7+…+37-39+41=-2×10+41=21.
4.(2019·信阳一中期中)已知数列{an}的通项公式是an=2n-3n,则其前20项和为( )
A.380- B.400-
C.420- D.440-