1.圆的定义及方程
定义
|
平面内与定点的距离等于定长的点的集合(轨迹)
|
标准方程
|
(x-a)2+(y-b)2=r2(r>0)
|
圆心:(a,b),半径:r
|
一般方程
|
x2+y2+Dx+Ey+F=0,(D2+E2-4F>0)
|
圆心:,半径:
|
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.
(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.
(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.
[小题体验]
1.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是________.
解析:将圆的一般方程化成标准方程,得(x+a)2+(y+1)2=2a,因为0<a<1,所以(0+a)2+(0+1)2-2a=(a-1)2>0,即>,所以原点在圆外.
答案:原点在圆外
2.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.
解析:设圆心C的坐标为(a,b),
则a==0,b==3,故圆心C(0,3).
半径r=AB==.
所以圆C的标准方程为x2+(y-3)2=2.
答案:x2+(y-3)2=2
3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.
解析:因为点(1,1)在圆(x-a)2+(y+a)2=4的内部,所以(1-a)2+(1+a)2<4.