1.基本不等式:≤
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当a=b时取等号.
(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.
2.两个重要的不等式
(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
(2)ab≤2(a,b∈R),当且仅当a=b时取等号.
3.利用基本不等式求最值
已知x≥0,y≥0,则
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).
(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).
1.+≥2(a,b同号),当且仅当a=b时取等号.
2.ab≤2≤.
3.≤≤≤(a>0,b>0).
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)两个不等式a2+b2≥2ab与≥成立的条件是相同的. ( )