1.(2018·郑州一检)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆与直线ax+2by-ab=0相切.
(1)求椭圆C的离心率;
(2)如图,过F1作直线l与椭圆分别交于P,Q两点,若△PQF2的周长为4,求·的最大值.
解:(1)由题意知=c,即3a2b2=c2(a2+4b2)=(a2-b2)(a2+4b2).化简得a2=2b2,所以e==.
(2)因为△PQF2的周长为4,所以4a=4,得a=,
由(1)知b2=1,所以椭圆C的方程为+y2=1,且焦点F1(-1,0),F2(1,0),
①若直线l的斜率不存在,则直线l⊥x轴,直线方程为
x=-1,P,Q,=,=,故·=.
②若直线l的斜率存在,设直线l的方程为y=k(x+1),
由消去y并整理得
(2k2+1)x2+4k2x+2k2-2=0,
设P(x1,y1),Q(x2,y2),
则x1+x2=-,x1x2=,
·=(x1-1,y1)·(x2-1,y2)
=(x1-1)(x2-1)+y1y2
=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1
=(k2+1)+(k2-1)+k2+1