[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).
1.两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sin_αcos_β±cos_αsin_β;
(2)cos(α±β)=cos_αcos_β?sin_αsin_β;
(3)tan(α±β)=.
2.二倍角的正弦、余弦、正切公式
(1)sin 2α=2sin αcos α;
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
(3)tan 2α=.
3.辅助角公式
asin α+bcos α=sin(α+φ)其中sin φ=,cos φ=.
[常用结论]
1.公式的常用变式
tan α±tan β=tan(α±β)(1?tan αtan β);
sin 2α==;
cos 2α==.
2.降幂公式:sin2α=;
cos2α=;