时间:120分钟 分值:150分
第Ⅰ卷(选择题 共60分)
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )
A.324 B.328
C.360 D.648
解析:若个位数是0,从其余9个数中取出两个数排在前两位,有A92种排法;若个位数不是0,先从2、4、6、8中取一个放在个位,在其余的3个数和1、3、5、7、9中取出1个数排在首位,再从其余8个数(包括0)中取出一个数排在十位,有4×8×8=256(种)排法.所以满足条件的三位偶数共有A92+4×8×8=328(个),故选B.
答案:B
2.某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有4名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有( )
A.72种 B.54种
C.36种 D.18种
解析:依题意,就要求改修数学的4名同学实际到三个班的具体人数分类计数:第一类,其中一个班接收2名、另两个班各接收1名,分配方案共有C31•C42•A22=36(种);第二类,其中一个班不接收、另两个班各接收2名,分配方案共有C31•C42=18(种).因此,满足题意的不同的分配方案有36+18=54(种),选B.
答案:B