一、坐标系
1.了解在平面直角坐标系中刻画点的位置的方法,理解坐标系的作用.
2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
3.能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
4.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义.
5.了解在柱坐标系、球坐标系中刻画空间点的位置的方法,并与空间直角坐标系中刻画点的位置的方法相比较,体会它们的区别.
二、参数方程
1.了解参数方程,了解参数的意义.
2.分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.
3.了解平摆线和渐开线的生成过程,并能写出它们的参数方程.
4.了解其他摆线的生成过程;了解摆线在实际中应用的实例;了解摆线在刻画行星运动轨道中的作用.
|
本章重点:
1.根据问题的几何特征选择坐标系;坐标法思想;平面直角坐标系中的伸缩变换;极坐标系;直线和圆的极坐标方程.
2.根据问题的条件引进适当的参数,写出参数方程,体会参数的意义;分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.
本章难点:
1.对伸缩变换中点的对应关系的理解;极坐标的不唯一性;曲线的极坐标方程.
2.根据几何性质选取恰当的参数,建立曲线的参数方程.
|
坐标系是解析几何的基础,为便于用代数的方法研究几何图形,常需建立不同的坐标系,以便使建立的方程更加简单,参数方程是曲线在同一坐标系下不同于普通方程的又一种表现形式.某些曲线用参数方程表示比用普通方程表示更加方便.
本专题要求通过坐标系与参数方程知识的学习,使学生更全面地理解坐标法思想;能根据曲线的特点,选取适当的曲线方程表示形式,体会解决问题中数学方法的灵活性.
高考中,参数方程和极坐标是本专题的重点考查内容.对于柱坐标系、球坐标系,只要求了解即可.
|