1.了解平行线截割定理.
2.会证明并应用直角三角形射影定理.
3.会证明并应用圆周角定理,圆的切线的判定定理及性质定理,并会运用它们进行计算与证明.
4.会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理,并会运用它们进行几何计算与证明.
5.了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证明平面与圆柱面的截线是椭圆(特殊情形是圆).
6.了解下面的定理.
定理:在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l的交角为β(π与l平行,记β=0),则:
①β>α,平面π与圆锥的交线为椭圆;
②β=α,平面π与圆锥的交线为抛物线;
③β<α,平面π与圆锥的交线为双曲线.
7.会利用丹迪林(Dandelin)双球(如图所示,这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥面均相切,其切点分别为F,E)证明上述定理①的情形:
当β>α时,平面π与圆锥的交线为椭圆.
(图中,上、下两球与圆锥面相切的切点分别为点B和点C,线段BC与平面π相交于点A)
8.会证明以下结果:
①在7.中,一个丹迪林球与圆锥面的交线为一个圆,并与圆锥的底面平行.记这个圆所在的平面为π′.
②如果平面π与平面π′的交线为m,在6.①中椭圆上任取点A,该丹迪林球与平面π的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率).
9.了解定理6.③中的证明,了解当β无限接近α时,平面π的极限结果.
|
本章重点:相似三角形的判定与性质,与圆有关的若干定理及其运用,并将其运用到立体几何中.
本章难点:对平面截圆柱、圆锥所得的曲线为圆、椭圆、双曲线、抛物线的证明途径与方法,它是解立体几何、平面几何知识的综合运用,应较好地把握.
|
本专题强调利用演绎推理证明结论,通过推理证明进一步发展学生的逻辑推理能力,进一步提高空间想象能力、几何直观能力和综合运用几何方法解决问题的能力.
第一讲与第二讲是传统内容,高考中主要考查平行线截割定理、直角三角形射影定理以及与圆有关的性质和判定,考查逻辑推理能力.第三讲内容是新增内容,在新课程高考下,要求很低,只作了解.
|