1.平面向量的实际背景及基本概念
(1)了解向量的实际背景;
(2)理解平面向量的概念,理解两个向量相等的含义;
(3)理解向量的几何表示.
2.向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义;
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;
(3)了解向量线性运算的性质及其几何意义.
3.平面向量的基本定理及其坐标表示
(1)了解平面向量的基本定理及其意义;
(2)掌握平面向量的正交分解及其坐标表示;
(3)会用坐标表示平面向量的加法、减法与数乘运算;
(4)理解用坐标表示的平面向量共线的条件.
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义;
(2)了解平面向量的数量积与向量投影的关系;
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算;
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题;
(2)会用向量方法解决某些简单的力学问题及其他一些实际问题.
|
本章重点:
1.向量的各种运算;
2.向量的坐标运算及数形结合的思想;
3.向量的数量积在证明有关向量相等、两向量垂直、投影、夹角等问题中的应用.
本章难点:
1.向量的直角坐标运算在证明向量垂直和平行问题中的应用;
2.向量的夹角公式和距离公式在求解平面上两条直线的夹角和两点间距离中的应用.
|
向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,同时又是数形结合思想运用的典范,正是由于向量既具有几何形式又具有代数形式的“双重身份”,所以它成为中学数学知识的一个交汇点.在高考中,不仅注重考查向量本身的基础知识和方法,而且常与解析几何、三角函数、数列等一起进行综合考查.
在考试要求的层次上更加突出向量的实际背景、几何意义、运算功能和应用价值.
|