1.(2019·杭州模拟)已知平面向量a,b,e满足|e|=1,a·e=1,b·e=-2,|a+b|=2,则a·b的最大值为( )
A.-1B.-2C.-D.-
2.点P是△ABC所在平面上一点,满足|-|-|+-2|=0,则△ABC的形状是( )
A.等腰直角三角形 B.直角三角形
C.等腰三角形 D.等边三角形
3.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(c-a)·(c-b)=0,则|c|的最大值是( )
A.1B.2C.D.
4.(2019·嘉兴模拟)已知在△ABC中,AB=3,AC=2,∠BAC=60°,点D,E分别在边BC和AC上,且=,=λ,若·=-,则实数λ的值为( )
A.B.C.D.
5.若向量a,b满足|a|=1,|b|=2,|a+b|=|a-b|,则|ta+(1-t)b|(t∈R)的最小值为( )
A.B.C.D.
6.(2019·温州模拟)在矩形ABCD中,AB=3AD=3,E为CD上一点,AE交BD于点F,若·=0,则·等于( )
A.B.C.D.
7.设O是平面ABC内一定点,P为平面ABC内一动点,若(-)·(+)=(-)·(+)=(-)·(+)=0,则O为△ABC的( )