平面向量基本定理的实质及解题思路
(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
1.在梯形ABCD中,AB∥CD,AB=2CD,M,N分别为CD,BC的中点.若=λ+μ,则λ+μ等于( )
A. B.
C. D.
解析:选D 因为=+=+=+(+)=2++=2--,所以=-,所以λ=-,μ=,所以λ+μ=.
2.如图,已知平行四边形ABCD的边BC,CD的中点分别是K,L,且=e1,=e2,试用e1,e2表示,.