三角函数的图象与性质是每年高考命题的热点,除考查基本问题外,还常涉及求参数范围问题,多为压轴小题;在综合问题中,常考查三角函数图象的变换和性质、三角恒等变换、零点、不等式等的交汇创新问题.
策略一:针对选择题特事特办,选择题中关于三角函数的图象和性质的问题是多年来高考的热点,三角函数试题常涉及函数y=Asin(ωx+φ)(ω>0,A>0)的图象的单调性、对称性、周期等问题.一般来说:
(1)若函数y=Asin(ωx+φ)(ω>0,A>0)有两条对称轴x=a,x=b,则有|a-b|=+(k∈Z);
(2)若函数y=Asin(ωx+φ)(ω>0,A>0)有两个对称中心M(a,0),N(b,0),则有|a-b|=+(k∈Z);
(3)若函数y=Asin(ωx+φ)(ω>0,A>0)有一条对称轴x=a,一个对称中心M(b,0),则有|a-b|=+(k∈Z).
策略二:研究函数在某一特定区间的单调性,若函数仅含有一个参数的时候,利用导数的正负比较容易控制,但对于函数y=Asin(ωx+φ)(ω>0,A>0)含多个参数,并且具有周期性,很难解决,所以必须有合理的等价转化方式才能解决.
[典例] (2016·全国卷Ⅰ)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为( )
A.11 B.9
C.7 D.5
[思路点拨] 本题条件较多,事实上从题型特征的角度来看,若选择题的已知条件越多,那么意味着可用来排除选项的依据就越多,所谓正面求解也是在不断缩小的范围内与条件进行对比验证.
[解题观摩] 法一:排除法