用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试题 >> 数学试题
高中数学编辑
(通用版)2020高考数学一轮复习第二讲解题的指导思想—化归寻旧讲义理
下载扣金币方式下载扣金币方式
需消耗0金币 立即下载
0个贡献点 立即下载
0个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试题
    资源子类一轮复习
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小277 K
    上传用户majiawen
  • 更新时间2019/6/18 11:18:06
    下载统计今日0 总计15
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
在数学习题的解答过程中,除了第一讲中对信息加工的实践操作活动外,更重要的是大脑加工信息的思维活动,它的规律就是化归寻旧思想.“寻”即“寻找”“联系”之意;“旧”指现有的知识经验.也就是说信息加工的思维活动规律就是寻找问题的信息与现有的知识经验之间的联系,为加工信息的实践操作活动指明方向,即为化归活动确定方向.常见的化归寻旧方法有以下几种:
一、求同求异,寻旧之规律
()求同寻旧
求同寻旧就是习题解答过程中人的思维活动总是表现为寻找习题信息与已知的某项知识经验的共性.特别是寻找问题信息与已知的某个公式、某个定理或某个曾经解决过的问题等在表达形式上或内容上的共同点.
解题者在感知问题的信息时,眼睛如照相机一样将习题所呈现的信息符号拍摄下来,这些符号通过视觉神经传输到大脑,大脑对信息符号进行识别、分类,然后寻找信息符号在认知结构中的联络点,联络点一经找到,就说明习题信息与认知结构中的某项知识经验存在一定的联系.
[1] 已知,求证:sin θ.
[求同寻旧] 由于条件和结论都是三角等式,而结论信息是不含角2φ的三角等式,根据认知经验“条件中含有2φ的三角函数,而结论是不含2φ的三角函数,说明应当对条件信息进行加工处理,消去2φ.为了消去2φ的三角函数,联系到熟悉结构的经验sin22φcos22φ1,就会产生“先解出sin 2φcos 2φ,然后平方消去参数2φ这一化归方案.
[证明] 因为
所以2asin 2φ.
因为
所以2acos 2φ(1a2)
22再化简得2(a21)(a21)sin θ2(a21)2.
因为a210,所以sin θ.
  • 暂时没有相关评论
精品专题

请先登录网站关闭

  忘记密码  新用户注册