专题25 带电粒子在匀强磁场中运动的多解、临界问题
1.(多选)如图,虚线MN将平面分成Ⅰ和Ⅱ两个区域,两个区域都存在与纸面垂直的匀强磁场。一带电粒子仅在磁场力作用下由Ⅰ区运动到Ⅱ区,弧线aPb为运动过程中的一段轨迹,其中弧aP与弧Pb的弧长之比为2∶1,下列判断一定正确的是
A.两个磁场的磁感应强度方向相反,大小之比为2∶1
B.粒子在两个磁场中的运动速度大小之比为1∶1
C.粒子通过aP、Pb两段弧的时间之比为2∶1
D.弧aP与弧Pb对应的圆心角之比为2∶1
【答案】BC
2.(多选)如图,边界OA与OC之间分布有垂直纸面向里的匀强磁场,边界OA上有一粒子源S。某一时刻,从S平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间后有大量粒子从边界OC射出磁场。已知∠AOC=60°,从边界OC射出的粒子在磁场中运动的最长时间等于(T为粒子在磁场中运动的周期),则从边界OC射出的粒子在磁场中运动的时间可能为
A.. B. C. D.
【答案】ABC
3.(多选)在xOy平面上以O为圆心,半径为r的圆形区域内,存在磁感应强度为B的匀强磁场,磁场方向垂直于xOy平面。一个质量为m、电荷量为q的带电粒子,从原点O以初速度v沿y轴正方向开始运动,经时间t后经过x轴上P点,此时速度与x轴正方向成θ角,如图。不计重力的影响,则下列关系一定成立的是
A.若r<,则0°<θ<90°
B.若r≥,则t≥
C.若t=,则r=
D.若r=,则r=
【答案】AD
【解析】带电粒子在磁场中从O点沿y轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x轴上,轨道半径R=。当r≥时,P点在磁场内,粒子不能射出磁场区,所以垂直于x轴过P点,θ最大且为90°,运动时间为半个周期,即t=;当r<时,粒子在到达P点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x轴的粒子的速度偏转角φ>90°,所以过x轴时0°<θ<90°,A对,B错;同理,若t=,则r≥,若r=,则t=,C错,D对。