1.(2015·高考全国Ⅱ卷)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( )
A.5 B.7
C.9 D.11
解析:a1+a3+a5=3a3=3⇒a3=1,S5==5a3=5.
答案:A
2.数列{an}为等差数列,若a1=1,d=2,Sk+2-Sk=24,则k=( )
A.8 B.7
C.6 D.5
解析:∵Sk+2-Sk=ak+1+ak+2=a1+kd+a1+(k+1)d=2a1+(2k+1)d=2×1+(2k+1)×2=4k+4=24,∴k=5.
答案:D
3.记等差数列{an}的前n项和为Sn,若a1=,S4=20,则S6=( )
A.16 B.24
C.36 D. 48
解析:设数列{an}的公差为d,则Sn=+d,∴S4=2+6d=20,∴d=3,∴S6=3+15d=48.
答案:D
4.设{an}是等差数列,若a2=3,a7=13,则数列{an}的前8项和为( )
A.128 B.80
C.64 D.56
解析:设数列{an}的前n项和为Sn,则S8====64.
答案:C
5.数列{an}是等差数列,a1+a2+a3=-24,a18+a19+a20=78,则此数列的前20项和等于( )
A.160 B.180
C.200 D.220
解析:∵{an}是等差数列,∴a1+a20=a2+a19=a3+a18.
又a1+a2+a3=-24,a18+a19+a20=78,
∴a1+a20+a2+a19+a3+a18=54.
∴3(a1+a20)=54.∴a1+a20=18.
∴S20==180.
答案:B