【考点审视】
高考试卷中立体几何把考查的立足点放在空间图形上,突出对空间观念和空间想象能力的考查.立体几何的基础是对点、线、面的各种位置关系的讨论和研究,进而讨论几何体。因此高考命题时,突出空间图形的特点,侧重于直线与直线、直线与平面、平面与平面的各种位置关系的考查,以便审核考生立体几何的知识水平和能力。
多面体和棱柱、棱锥、正多面体、球是空间直线与平面问题的延续和深化。要熟练掌握概念、性质以及它们的体积公式,同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题来解,会运用“割补法”等求解。
本章主要考查平面的性质、空间两直线、直线和平面、两个平面的位置关系以及空间角和距离、面积及体积。
考试要求