1.函数的最值的定义:函数y=f(y),定义域为A,若存在y0∈A,使得对任意的y∈A,恒有成立,则称为函数的最小(大)值。
2.求函数最值的方法(求最值与求值域一般相同,最值问题更具综合性和灵活性)
(1)配方法:用于二次函数,或可通过换元法转化为二次函数的最值问题;
(2)判别式法:运用方程思想,依据二次方程有根,求出y的最值,但必须检验这个最值在定义域内有相应的x的值;
(3)不等式法:利用平均不等式求最值,注意一正二定三等;
(4)换元法:通过变量代换,化繁为简,化难为易,化未知为已知,其中三角代换是重要方法。换元后须注意新变量的取值范围;
(5)数形结合法(图象法):当一个函数图象可作时,通过图象可求其最值;
(6)单调性法:利用函数的单调性求最值;