【导学目标】1.从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
【知识梳理】
1.二元一次不等式(组)表示的平面区域
(1)判断不等式Ax+By+C>0所表示的平面区域,可在直线Ax+By+C=0的某一侧的半平面内选取一个特殊点,如选原点或坐标轴上的点来验证Ax+By+C的正负.当C≠0时,常选用原点.
对于任意的二元一次不等式Ax+By+C>0(或<0),无论B为正值还是负值,我们都可以把y项的系数变形为正数,当B>0时,
①Ax+By+C>0表示直线Ax+By+C=0______的区域;
②Ax+By+C<0表示直线Ax+By+C=0______的区域.
(2)画不等式Ax+By+C>0表示的平面区域时,其边界直线应为虚线;画不等式Ax+By+C≥0表示的平面区域时,边界直线应为实线.画二元一次不等式表示的平面区域,常用的方法是:直线定“界”、原点定“域”
2.线性规划的有关概念
(1)线性约束条件——由条件列出一次不等式(或方程)组.