1.(2016·新课标全国Ⅲ,19)如图,四棱锥PABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求四面体NBCM的体积.
(1)证明 由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.
因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.
(2)解 因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.