1.(2015·九江模拟)函数f(x)=(x-3)ex的单调递增区间是( )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
解析:选D 函数f(x)=(x-3)ex的导数为f′(x)=[(x-3)ex]′=ex+(x-3)ex=(x-2)ex.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)ex>0,解得x>2.
2.已知函数f(x)=x3+ax+4,则“a>0”是“f(x)在R上单调递增”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.
3.(2016·黄冈调研)已知a≥1,f(x)=x3+3|x-a|,若函数f(x)在[-1,1]上的最大值和最小值分别记为M,m,则M-m的值为( )
A.8 B.-a3-3a+4
C.4 D.-a3+3a+2