1.(2015·兰州双基测试)定义在实数集上的函数f(x)=x2+x,g(x)=x3-2x+m.
(1)求函数f(x)的图象在x=1处的切线方程;
(2)若f(x)≥g(x)对任意的x∈[-4,4]恒成立,求实数m的取值范围.
解:(1)∵f(x)=x2+x,∴当x=1时,f(1)=2,
∵f′(x)=2x+1,∴f′(1)=3,
∴所求切线方程为y-2=3(x-1),即3x-y-1=0.
(2)令h(x)=g(x)-f(x)=x3-x2-3x+m,
则h′(x)=(x-3)(x+1).
∴当-4<x<-1时,h′(x)>0;
当-1<x<3时,h′(x)<0;
当3<x<4时,h′(x)>0.
要使f(x)≥g(x)恒成立,即h(x)max≤0,
由上知h(x)的最大值在x=-1或x=4处取得,
而h(-1)=m+,h(4)=m-,
所以m+≤0,即m≤-,
∴实数m的取值范围为.