一、选择题
1.用反证法证明命题:“若a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”的假设为( )
A.a,b,c,d中至少有一个正数
B.a,b,c,d全都为正数
C.a,b,c,d全都为非负数
D.a,b,c,d中至多有一个负数
2.若a,b,c是不全相等的正数,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数是( )
A.0 B.1 C.2 D.3
3.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证<a”索的因应是( )
A.a-b>0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
4.设a=-,b=-,c=-,则a、b、c的大小顺序是( )
A.a>b>c B.b>c>a C.c>a>b .a>c>b D