27.设An为数列{an}的前n项和,An=(an-1)(n∈N*),数列{bn}的通项公式为bn=4n+3(n∈N).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若d∈{a1,a2,a3,…,an,…}∩{b1,b2,b3,…,bn,…},则称d为数列{an}与{bn}的公共项,将数列{an}{bn}的公共项,按它们在原数列中的先后顺序排成一个新的数列{dn},证明数列{dn}的通项公式为dn=32n+1(n∈N*);
(Ⅲ)设数列{dn}中第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和,Dn为数列{dn}的前n项和,Tn=Br+Dn,求.