10.已知a>0,函数f(x)=ax-bx2.
(1)当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2;
(2)当b>1时,证明:对任意x∈0,1],|f(x)|≤1的充要条件是b-1≤a≤2;
(3)当0<b≤1时,讨论:对任意x∈0,1],|f(x)|≤1的充要条件.
(1)证明:根据题设,对任意x∈R,都有f(x)≤1.又f(x)=-b(x-)2+.∴f()=≤1,∵a>0,b>0,∴a≤2.
(2)证明:必要性:对任意x∈0,1],|f(x)|≤1f(x)≥-1.据此可推出
f(1)≥-1,即a-b≥-1,∴a≥b-1.
对任意x∈0,1],|f(x)|≤1f(x)≤1,因为b>1,可得0<<1,可推出f()≤1,即a·-1≤1,∴a≤2,∴b-1≤a≤2.