第5讲 导数与不等式、存在性及恒成立问题
一、选择题
1.已知函数f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,则实数m的取值范围是( )
A. B.
C.(-∞,2] D.(-∞,2)
解析 f′(x)=x2-4x,由f′(x)>0,得x>4或x<0.
∴f(x)在(0,4)上单调递减,在(4,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)min=f(4).∴要使f(x)+5≥0恒成立,只需f(4)+5≥0恒成立即可,代入解之得m≥.
答案 A
2.若存在正数x使2x(x-a)<1成立,则a的取值范围是( )
A.(-∞,+∞) B.(-2,+∞)
C.(0,+∞) D.(-1,+∞)
解析 ∵2x(x-a)<1,∴a>x-.