专题三 三角函数与平面向量
第3讲 平面向量
考情解读 1.平面向量基本定理和向量共线定理是向量运算和应用的基础,高考中常以小题形式进行考查.2.平面向2量的线性运算和数量积是高考的热点,有时和三角函数相结合,凸显向量的工具性,考查处理问题的能力.
1.平面向量中的五个基本概念
(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.
(2)长度等于1个单位长度的向量叫单位向量,a的单位向量为.
(3)方向相同或相反的向量叫共线向量(平行向量).
(4)如果直线l的斜率为k,则a=(1,k)是直线l的一个方向向量.
(5)向量的投影:|b|cos〈a,b〉叫做向量b在向量a方向上的投影.
2.平面向量的两个重要定理
(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.
(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有
一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.
3.平面向量的两个充要条件
若两个非零向量a=(x1,y1),b=(x2,y2),则