1.已知f(x)=|x|+2|x-a|(a>0).
(1)当a=1时,解不等式f(x)≤4;
(2)若f(x)≥4恒成立,求实数a的取值范围.
解 (1)当a=1时,不等式f(x)≤4即为|x|+2|x-1|≤4,
①当x≥1时,原不等式可化简为x+2(x-1)≤4,得1≤x≤2;
②当0≤x<1时,原不等式可化简为x+2(1-x)≤4,得0≤x<1;
③当x<0时,原不等式可化简为-x+2(1-x)≤4,得-≤x<0.
综合①②③得,-≤x≤2,即当a=1时,不等式f(x)≤4的解集为.
(2)①当x≥a时,f(x)=x+2(x-a)=3x-2a;
②当0≤x<a时,f(x)=x+2(a-x)=-x+2a;