教学设计
3.2 等比数列的前n项和
整体设计
教学分析
本节分两课时完成,第1课时侧重于公式的推导及记忆,第2课时侧重于公式的灵活应用.等比数列的前n项和是教材中很重要的一块内容,是等比数列知识的再认识和再运用,它对学生进一步掌握理解等比数列以及数列的知识有着很重要的作用.等比数列前n项和公式的推导,也是培养学生分析、发现、类比等能力的很好的一个工具.
新大纲中对本知识有较高层次的要求,教学地位重要,是教学全部学习任务中必须优先完成的任务.这项知识内容有广泛的实际应用,很多问题都要转化到等比数列的求和上来,才能得到解决.如增长率、浓度配比、细胞分裂、储蓄信贷、养老保险、分期付款的有关计算等许多方面均用到等比数列的知识,因而考题中涉及数列的应用问题屡见不鲜.掌握等比数列的基础知识,培养建模和解模能力是解决数列应用问题的基本途径.
等比数列的通项公式与前n项和公式中共涉及五个量,将两个公式结合起来,已知其中三个量可求另两个量.即已知a1,an,q,n,Sn五个量中的任意三个,就可以求出其余的两个量,这其中渗透了方程的思想.其中解指数方程的难度比较大,训练要控制难度和复杂程度,要大胆地摒弃“烦琐的计算、人为技巧化的难题和过分强调细枝末节的内容”.