第2课时 对数的运算
课时目标 1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.3.了解换底公式并能用换底公式将一般对数化成自然对数和常用对数.
1.对数的运算性质
如果a>0,且a≠1,M>0,N>0,那么:
(1)loga(M·N)=____________________;
(2)loga=____________________;
(3)logaMn=__________(n∈R).
2.对数换底公式
logab=(a>0,且a≠1,b>0,c>0,且c≠1);
特别地:logab·logba=____(a>0,且a≠1,b>0,且b≠1).
一、选择题
1.下列式子中成立的是(假定各式均有意义)( )
A.logax·logay=loga(x+y)
B.(logax)n=nlogax
C.=loga
D.=logax-logay
2.计算:log916·log881的值为( )
A.18 B. C. D.
3.若log5·log36·log6x=2,则x等于( )