3.1.2 用二分法求方程的近似解
课时目标 1.理解二分法求方程近似解的原理.2.能根据具体的函数,借助于学习工具,用二分法求出方程的近似解.3.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.
1.二分法的概念
对于在区间[a,b]上连续不断且____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点______________,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求________________________________________________________________________.
2.用二分法求函数f(x)零点近似值的步骤:
(1)确定区间[a,b],验证____________,给定精确度ε;
(2)求区间(a,b)的中点____;
(3)计算f(c);
①若f(c)=0,则________________;
②若f(a)·f(c)<0,则令b=c(此时零点x0∈________);
③若f(c)·f(b)<0,则令a=c(此时零点x0∈________).
(4)判断是否达到精确度ε|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).:即若
一、选择题
1.用“二分法”可求近似解,对于精确度ε说法正确的是( )
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低