§2.4 平面向量的数量积
2.4.1 平面向量数量积的物理背景及其含义
课时目标 1.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.2.体会平面向量的数量积与向量投影的关系.3.掌握向量数量积的运算律.
1.平面向量数量积
(1)定义:已知两个非零向量a与b,我们把数量______________叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos θ,其中θ是a与b的夹角.
(2)规定:零向量与任一向量的数量积为____.
(3)投影:设两个非零向量a、b的夹角为θ,则向量a在b方向的投影是____________,向量b在a方向上的投影是______________.
2.数量积的几何意义
a·b的几何意义是数量积a·b等于a的长度|a|与b在a的方向上的投影________________的乘积.
3.向量数量积的运算律
(1)a·b=________(交换律);
(2)(λa)·b=________=________(结合律);
(3)(a+b)·c=______________________(分配律).